Backed by customer commentary and published metrics, Transphorm’s high-voltage GaN FETs move power electronics beyond Silicon’s limitations.
Transphorm’s customer base includes product manufacturers unsatisfied with the status quo. Companies on the bleeding edge of innovation that strive to break their own power system performance records, raising the bar industry-wide. Gallium nitride power transistors are proving to be their disruptive technology of choice.
Inergy’s Kodiak Extreme utilizes a photovoltaic (PV) inverter and battery charger both integrating Transphorm’s JEDEC-qualified GaN platform. These power systems result in a generator that is more powerful, lighter, and quicker to charge than competitive products.
TDK-Lambda’s redesigned standard power module uses a bridgeless totem-pole power factor correction topology to optimize Transphorm’s TPH3206LDG FET in an 8×8 PQFN package.
Wentai’s flagship 80 PLUS® Titanium ATX power supply targets AI, crypto mining, Esports, gaming, and more. It uses Transphorm’s Gen III GaN FETs in an interleaved CCM boost PFC to achieve market-leading performance and design metrics ranging from form factor size to power density.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
High quality, high reliability GaN in standard TO-XXX packages.
Transphorm’s GaN FETs switch up to 4x faster than Silicon solutions. Further, unlike Si MOSFETs, the GaN transistors are inherently bi-directional and optimized in a bridgeless totem-pole power factor correction design.
Our Q+R is in large part enabled by our design choice. Today, cascode is the only configuration proven to enable GaN in real-world applications. Transphorm’s GaN is backed by extensive lifetime, quality and reliability data—unavailable with other configurations today, such as pGaN e-mode.
Attribute | Cascode (Transphorm)* | e-mode (market)* |
---|---|---|
Quality, reliability, lifetime performance | Extended JEDEC, AEC-Q101, lifetime testing | Limited data |
Device breakdown voltage (TJ = 150°C) | 650 V (qualified), 1200 V (measured) | 500 V and 600 V (measured |
Maximum transient protection | 800 V | 750 V |
Gate drive safety margin (RON @ VGS) | 10 V | 1 V |
Gate drive noise immunity | 4.0 V (typical) | 1.7 V (typical) |
Negative gate drive required | No | Yes |
Slew rate control | Yes | Yes |
Reverse conduction operation (VSD) | 2.2 V to 2.6 V | 6 V to 9 V (defined by gate drive) |
Saturation current limit (TJ = 150°C) | > 3x higher than e-mode | Reduced channel and gate charge |
Paralleling | Up to two TO-XXX devices | More than two devices possible |
FOM (RON * QOSS) | Industry standard | Minimal increase with reduced Q+R |
Die size | Industry standard | Smaller with reduced Q+R |
Thermal performance (72 mΩ) | 50°C at 1500 W 83°C at 2526 W |
80°C at 1500 W |
*Unless specified, data is based on a 50 mΩ device.
High-voltage GaN technology benefits numerous markets that require reliable higher efficiency, higher performance power conversion. The highest adoption rates are projected for the following application areas:
Increases clean power output in standardized server and telecom form factors.
Allows for significantly smaller, lighter PV inverter and residential applications.
Enables reduction of total solution complexity while improving precision.
Generates longer distance per charge with a lower overall system cost.